高一數學必修一知識點總結歸納
高一數學必修一知識點總結歸納人教版
做好高一數學知識點總結,對大面積提高數學學習質量起著重要作用。那么高一數學知識點有哪些呢?以下是小編準備的一些高一數學必修一知識點總結歸納,僅供參考。
高一數學必修一知識點
第一章 集合與函數概念
一、集合有關概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。 2、集合的中元素的三個特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性
說明:
(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法。
注意?。撼S脭导捌溆浄ǎ悍秦撜麛导?即自然數集)記作:N 正整數集 N__或 N+ 整數集Z 有理數集Q 實數集R 關于“屬于”的概念 集合的元素通常用小寫的拉丁字母表示,
如:a是集合A的元素,就說a屬于集合A 記作 a∈A ,相反,a不屬于集合A 記作 a?A 列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。 ①語言描述法:例:{不是直角三角形的三角形} ②數學式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}
4、集合的分類:
1.有限集 含有有限個元素的集合 2.無限集 含有無限個元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5}二、集合間的基本關系
1.“包含”關系—子集注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關系(5≥5,且5≤5,則5=5)實例:設 A={x|x2-1=0} B={-1,1} “元素相同”
結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,
即:A=B ① 任何一個集合是它本身的子集。AíA
②真子集:如果AíB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 AíB, BíC ,那么 AíC
④ 如果AíB 同時 BíA 那么A=B
3. 不含任何元素的集合叫做空集,記為Φ 規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的運算 1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集. 記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集與并集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.
4、全集與補集(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集) 記作: CSA 即 CSA ={x | x?S且 x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ
⑶(CUA)∪A=U
二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域
. 注意:2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;
3 函數的定義域、值域要寫成集合或區(qū)間的形式. 定義域補充 能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開方數不小于零;
(3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零 (6)實際問題中的函數的定義域還要保證實際問題有意義. (又注意:求出不等式組的解集即為函數的定義域。) 構成函數的三要素:定義域、對應關系和值域 再注意:(1)構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備) (見課本21頁相關例2) 值域補充 (1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。 3. 函數圖象知識歸納 (1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象. C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C={ P(x,y) | y= f(x) , x∈A } 圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。 (2) 畫法 A、描點法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最后用平滑的曲線將這些點連接起來. B、圖象變換法(請參考必修4三角函數) 常用變換方法有三種,即平移變換、伸縮變換和對稱變換
(3)作用: 1、直觀的看出函數的性質; 2、利用數形結合的方法分析解題的思路。提高解題的速度。 發(fā)現解題中的錯誤。 4.快去了解區(qū)間的概念
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數軸表示.
5.什么叫做映射 一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作“f:A B” 給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象
說明:函數是一種特殊的映射,映射是一種特殊的對應
,①集合A、B及對應法則f是確定的;②對應法則有“方向性”,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對于映射f:A→B來說,則應滿足:
(Ⅰ)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;
(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。
常用的函數表示法及各自的優(yōu)點:
1 函數圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;
2 解析法:必須注明函數的定義域;
3 圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特征;
4 列表法:選取的自變量要有代表性,應能反映定義域的特征. 注意?。航馕龇ǎ罕阌谒愠龊瘮抵?。列表法:便于查出函數值。圖象法:便于量出函數值
補充一:分段函數 (參見課本P24-25) 在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變量代入相應的表達式。
分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式并用一個左大括號括起來,并分別注明各部分的自變量的取值情況.
(1)分段函數是一個函數,不要把它誤認為是幾個函數;
(2)分段函數的定義域是各段定義域的并集,值域是各段值域的并集. 補充二:復合函數 如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復合函數。
例如: y=2sinX y=2cos(X2+1)
7.函數單調性
(1).增函數 設函數y=f(x)的定義域為I,如果對于定義域I內的某個區(qū)間D內的任意兩個自變量x1,x2,當x1f(x2),那么就說f(x)在這個區(qū)間上是減函數.區(qū)間D稱為y=f(x)的單調減區(qū)間.
注意:1 函數的單調性是在定義域內的某個區(qū)間上的性質,是函數的局部性質
2 必須是對于區(qū)間D內的任意兩個自變量x1,x2;當x1
(2) 圖象的特點 如果函數y=f(x)在某個區(qū)間是增函數或減函數,那么說函數y=f(x)在這一區(qū)間上具有(嚴格的)單調性,在單調區(qū)間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區(qū)間與單調性的判定方法 (A)
定義法: 1 任取x1,x2∈D,且x1
8.函數的奇偶性 (1)偶函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數. (2).奇函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.
注意:1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。 2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).
(3)具有奇偶性的函數的圖象的特征 偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.
總結:利用定義判斷函數奇偶性的格式步驟:
1 首先確定函數的定義域,并判斷其定義域是否關于原點對稱;
2 確定f(-x)與f(x)的關系;
3 作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數. 注意啊:函數定義域關于原點對稱是函數具有奇偶性的必要條件.
首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 .
9、函數的解析表達式 (1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域. (2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)
10.函數最大(小)值(定義見課本p36頁)
1 利用二次函數的性質(配方法)求函數的最大(小)值2 利用圖象求函數的最大(小)值3 利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區(qū)間[a,b]上單調遞增,在區(qū)間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區(qū)間[a,b]上單調遞減,在區(qū)間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
第二章 基本初等函數
一、指數函數 (一)指數與指數冪的運算
1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ __. 當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這里 叫做根指數(radical exponent), 叫做被開方數(radicand)
. 當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合并成± ( >0).
由此可得:負數沒有偶次方根;0的任何次方根都是0,
, 2.分數指數冪 正數的分數指數冪的意義,規(guī)定: , 0的正分數指數冪等于0,0的負分數指數冪沒有意義
指出:規(guī)定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
(二)指數函數及其性質
1、指數函數的概念:一般地,函數 叫做指數函數(exponential ),其中x是自變量,函數的定義域為R. 注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質 a>1 0
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對于指數函數 ,總有 ;
(4)當 時,若 ,則 ; 二、對數函數 (一)對數 1.對數的概念:一般地,如果 ,那么數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)
說明:1 注意底數的限制 ,且 ; 2 ; 3 注意對數的書寫格式. 兩個重要對數: 1 常用對數:以10為底的對數 ; 2 自然對數:以無理數 為底的對數的對數 . 對數式與指數式的互化 對數式 指數式 對數底數 ← → 冪底數 對數 ← → 指數 真數 ← → 冪 (二)對數的運算性質 如果 ,且 , , ,那么: 1 · + ; 2 - ; 3 . 注意:換底公式 ( ,且 ; ,且 ; ). 利用換底公式推導下面的結論(1) ;(2) . (二)對數函數 1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變量,函數的定義域是(0,+∞). 注意:1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。 如: , 都不是對數函數,而只能稱其為對數型函數. 2 對數函數對底數的限制: ,且 . 2、對數函數的性質: a>1 0
(三)冪函數
1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數. 2、冪函數性質歸納. (1)所有的冪函數在(0,+∞)都有定義,并且圖象都過點(1,1); (2) 時,冪函數的圖象通過原點,并且在區(qū)間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸; (3) 時,冪函數的圖象在區(qū)間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨于 時,圖象在 軸上方無限地逼近 軸正半軸. 第三章 函數的應用 一、方程的根與函數的零點 1、函數零點的概念:對于函數 ,把使 成立的實數 叫做函數 的零點。 2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。即: 方程 有實數根 函數 的圖象與 軸有交點 函數 有零點. 3、函數零點的求法: 求函數 的零點: 1 (代數法)求方程 的實數根; 2 (幾何法)對于不能用求根公式的方程,可以將它與函數 的圖象聯系起來,并利用函數的性質找出零點. 4、二次函數的零點: 二次函數 . 1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點. 2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點. 3)△<0,方程 無實根,二次函數的圖象與軸無交點。
高一年級數學學習方法及技巧
一、預習
1、通覽教材,初步理解教材的基本內容和思路。
2、預習時如發(fā)現與新課相聯系的舊知識掌握得不好,則查閱和補習舊知識,給學習新知識打好牢固的基礎。
3、在閱讀新教材過程中,要注意發(fā)現自己難以掌握和理解的地方,以便在聽課時特別注意。
4、做好預習筆記。預習的結果要認真記在預習筆記上,預習筆記一般應記載教材的主要內容、自己沒有弄懂需要在聽課著重解決的問題、所查閱的舊知識等。
二、上課
1、課前準備好上課所需的課本、筆記本和其他文具,并抓緊時間簡要回憶和復習上節(jié)課所學的內容。
2、要帶著強烈的求知欲上課,希望在課上能向老師學到新知識,解決新問題。
3、上課時要集中精力聽講,上課鈴一響,就應立即進入積極的學習狀態(tài),有意識地排除分散注意力的各種因素。
4、聽課要抬頭,眼睛盯著老師的一舉一動,專心致志聆聽老師的每一句話。要緊緊抓住老師的思路,注意老師敘述問題的邏輯性,問題是怎樣提出來的,以及分析問題和解決問題的方法步驟。
5、如果遇到某一個問題或某個問題的一個環(huán)節(jié)沒有聽懂,不要在課堂上“鉆牛角尖”,而要先記下來,接著往下聽。不懂的問題課后再去鉆研或向老師請教。
6、要努力當課堂的主人。要認真思考老師提出的每一個問題,認真觀察老師的每一個演示實驗,大膽舉手發(fā)表自己的看法,積極參加課堂討論。
7、要特別注意老師講課的開頭和結尾。老師的“開場白”往往是概括上節(jié)內容,引出本節(jié)的新課題,并提出本節(jié)課的目的要求和要講述的中心問題,起著承上起下的作用。老師的課后總結,往往是一節(jié)課的精要提煉和復習提示,是本節(jié)課的高度概括和總結。
8、要養(yǎng)成記筆記的好習慣。是一邊聽一邊記,當聽與記發(fā)生矛盾時,要以聽為主,下課后再補上筆記。記筆記要有重點,要把老師板書的知識提綱、補充的課外知識、典型題目的解題步驟和課堂上沒有聽懂的問題記下來,供課后復習時參考。
三、作業(yè)
1、先看書后作業(yè),看書和作業(yè)相結合。只有先弄懂課本的基本原理和法則,才能順利地完成作業(yè),減少作業(yè)中的錯誤,也可以達到鞏固知識的目的。
2、注意審題。要搞清題目中所給予的條件,明確題目的要求,應用所學的知識,找到解決問題的途徑和方法。
3、態(tài)度要認真,推理要嚴謹,養(yǎng)成“言必有據”的習慣。準確運用所學過的定律、定理、公式、概念等。作業(yè)之后,認真檢查驗算,避免不應有的錯誤發(fā)生。
4、作業(yè)要獨立完成。只有經過自己動腦思考動手操作,才能促進自己對知識的消化和理解,才能培養(yǎng)鍛煉自己的思維能力;同時也能檢驗自己掌握的知識是否準確,從而克服學習上的薄弱環(huán)節(jié),逐步形成扎實的基礎。
5、認真更正錯誤。作業(yè)經老師批改后,要仔細看一遍,對于作業(yè)中出現的錯誤,要認真改正。要懂得,出錯的地方,正是暴露自己的知識和能力弱點的地方。經過更正,就可以及時彌補自己知識上的缺陷。
6、作業(yè)要規(guī)范。解題時不要輕易落筆,要在深思熟慮后一次寫成,切忌寫了又改,改了又擦,使作業(yè)涂改過多。書寫要工整,解題步驟既要簡明、有條理,又要完整無缺。作業(yè)時,各科都有各自的格式,要按照各學科的作業(yè)規(guī)范去做。
7、作業(yè)要保存好,定期將作業(yè)分門別類進行整理,復習時,可隨時拿來參考。
四、復習
1、當天的功課當天復習,并且要同時復習頭一天學習和復習過的內容,使新舊知識聯系起來。對老師講授的主要內容,在全面復習的基礎上,抓住重點和關鍵,特別是聽課中存在的疑難問題更應徹底解決。重點內容要熟讀牢記,對基本要領和定律等能準確闡述,并能真正理解它的意義;對基本公式應會自行推導,曉得它的來龍去脈;同時要搞清楚知識前后之間的聯系,注意總結知識的規(guī)律性。
2、單元復習。在課程進行完一個單元以后,要把全單元的知識要點進行一次全面復習,重點領會各知識要點之間的聯系,使知識系統(tǒng)化和結構化。有些需要記憶的知識,要在理解的基礎上熟練地記憶。
3、期中復習。期中考試前,要把上半學期學過的內容進行系統(tǒng)復習。復習時,在全面復習的前提下,特別應著重弄清各單元知識之間的聯系。
4、期末復習。期末考試前,要對本學期學過的內容進行系統(tǒng)復習。復習時力求達到“透徹理解、牢固掌握、靈活運用”的目的。
5、假期復習。每年的寒假和暑假,除完成各科作業(yè)外,要把以前所學過的內容進行全面復習,重點復習自己掌握得不太好的部分。這樣可以避免邊學邊忘,造成高三總復習時負擔過重的現象。
6、在達到上面要求的基礎上,學有余力的同學,可在老師的指導下,適當閱讀一些課外參考書或做一些習題,加深對有關知識的理解和記憶。
高一數學解題方法技巧
一、 數學解題方法
(1) 選擇題、填空題
選擇題、填空題通稱為小題,解答小題的原則為小題不大做,即用各種技巧解答問題,常用方法如下。
做小題有以下幾種基本方法:
1 回憶法。直接從記憶中取要選擇的內容。
2 直接解答法。多用在數理科的試題中,根據已知條件,通過計算、作圖或代入選擇依次進行驗證等途徑,得出正確答案。
3 淘汰法。把選項中錯誤中答案排除,余下的便是正確答案。
4 猜測法。5 數形結合法。6 特殊值法。
(2)解答題
解答題屬于大題,要寫出必要的解題過程與步驟,閱卷時,按步驟給分。常用類型方法如下:
1配方法 通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2 因式分解法因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。
3 換元法換元法是數學中一個非常重要而且應用十分廣泛的解題方法。所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4 判別式法與韋達定理一元二次方程ax2+bx+c=0(a、b、c屬于R,a0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
5 待定系數法在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6 構造法在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利于問題的解決。
7 反證法反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發(fā),經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā)。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8 面(體)積法平面(立體)幾何中講的面(體)積公式以及由面(體)積公式推出的與面(體)積計算有關的性質定理,不僅可用于計算面(體)積,而且用它來證明平面(立體)幾何題有時會收到事半功倍的效果。運用面(體)積關系來證明或計算平面幾何題的方法,稱為面(體)積方法,它是幾何中的一種常用方法。面(體)積法的特點是把已知和未知各量用面(體)積公式聯系起來,通過運算達到求證的結果。所以用面(體)積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9 幾何變換法在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的`習題,可以借助幾何變換法,化繁為簡,化難為易。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本質的認識。幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
二、考場上解題策略
數學要想考好,必須要有扎實的基礎知識和一定量的習題練習,在此基礎上輔以一些做題方法和考試技巧。高考考的是個人能力,要求考生不但會做題還要準確快速地解答出來,只有這樣才能在規(guī)定的時間內做完并能取得較高的分數。因此,對于大部分高考生來說,在考試時應處理好以下幾個關系。
1、快與準的關系
在目前題量大、時間緊的情況下,準字則尤為重要。只有準才能得分,只有準你才可不必考慮再花時間檢查,而快是平時訓練的結果,不是考場上所能解決的問題,一味求快,只會落得錯誤百出。適當地慢一點、準一點,可得多一點分;相反,快一點,錯一片,花了時間還得不到分。
2、審題與解題的關系
有的考生對審題重視不夠,匆匆一看急于下筆,以致題目的條件與要求都沒有吃透,至于如何從題目中挖掘隱含條件、啟發(fā)解題思路就更無從談起,這樣解題出錯自然多。只有耐心仔細地審題,準確地把握題目中的關鍵詞與量(如至少,0,自變量的取值范圍等等),從中獲取盡可能多的信息,才能迅速找準解題方向。
3、會做與得分的關系
要將你的解題策略轉化為得分點,主要靠準確完整的數學語言表述,這一點往往被一些考生所忽視,因此卷面上大量出現會而不對對而不全的情況,考生自己的估分與實際得分差之甚遠。如立體幾何論證中的跳步,使很多人丟失1/3以上得分,代數論證中以圖代證,盡管解題思路正確甚至很巧妙,但是由于不善于把圖形語言準確地轉譯為文字語言,得分少得可憐;對于許多看似簡單的題目,許多考生心中有數卻說不清楚,扣分者也不在少數。只有重視解題過程的語言表述,會做的題才能得分。
4、難題與容易題的關系
拿到試卷后,應將全卷通覽一遍,一般來說應按先易后難、先簡后繁的順序作答。近年來考題的順序并不完全是由易到難的順序,因此在答題時要合理安排時間,不要在某個卡住的題上打持久戰(zhàn),那樣既耗費時間又拿不到分,會做的題又被耽誤了。這幾年,數學試題已從一題把關轉為多題把關,因此解答題都設置了層次分明的臺階,入口寬,入手易,但是深入難,解到底難,因此看似容易的題也會有咬手的關卡,看似難做的題也有可得分之處。所以考試中看到容易題不可掉以輕心,看到新面孔的難題不要膽怯,冷靜思考、仔細分析,定能得到應有的分數。