日韩欧美国产手机在线观看,夜夜躁日日躁狠狠久久,国精产品一区二区三区的使用方法,日韩一区二区三区四区五

學習啦 > 學習方法 > 高中學習方法 > 高三學習方法 > 高三數學 > 高三數學二項分布知識點

高三數學二項分布知識點

時間: 鳳婷983 分享

高三數學二項分布知識點

  二項分布即重復n次獨立的伯努利試驗,在高考大綱中有要求理解二項分布,并能解決一些簡單問題,下面是學習啦小編給大家?guī)淼母呷龜祵W二項分布知識點,希望對你有幫助。

  高三數學二項分布知識點(一)

  一:二項分布的定義

  二項分布即重復n次的伯努力試驗。在每次試驗中只有兩種可能的結果,而且兩種結果發(fā)生與否互相對立,并且相互獨立,與其它各次試驗結果無關,事件發(fā)生與否的概率在每一次獨立試驗中都保持不變,則這一系列試驗總稱為n重伯努利實驗

  二:超幾何分布

  在產品質量的不放回抽檢中,若N件產品中有M件次品,抽檢n件時所得次品數X=k,則P(X=k)

  此時我們稱隨機變量X服從超幾何分布

  1)超幾何分布的模型是不放回抽樣

  2)超幾何分布中的參數是M,N,n

  上述超幾何分布記作X~H(n,M,N)。

  高三數學二項分布知識點(二)

  二項分布:

  一般地,在n次獨立重復的試驗中,用X表示事件A發(fā)生的次數,設每次試驗中事件A發(fā)生的概率為p,則

  ,k=0,1,2,…n,

  此時稱隨機變量X服從二項分布,記作X~B(n,p),并記

  。

  獨立重復試驗:

  (1)獨立重復試驗的意義:做n次試驗,如果它們是完全同樣的一個試驗的重復,且它們相互獨立,那么這類試驗叫做獨立重復試驗.

  (2)一般地,在n次獨立重復試驗中,設事件A發(fā)生的次數為X,在每件試驗中事件A發(fā)生的概率為p,那么在n次獨立重復試驗中,事件A恰好發(fā)生k次的概率為

  此時稱隨機變量X服從二項分布,記作

  并稱p為成功概率.

  (3)獨立重復試驗:若n次重復試驗中,每次試驗結果的概率都不依賴于其他各次試驗的結果,則稱這n次試驗是獨立的.

  (4)獨立重復試驗概率公式的特點:

  是n次獨立重復試驗中某 事件A恰好發(fā)生k次的概率.其中,n是重復試驗的次數,p是一次試驗中某事件A發(fā)生的概率,k是在n次獨立重復試驗中事件A恰好發(fā)生的次數,需要弄清公式中n,p,k的意義,才能正確運用公式.

  二項分布的判斷與應用:

  (1)二項分布,實際是對n次獨立重復試驗從概率分布的角度作出的闡述,判斷二項分布,關鍵是看某一事件是否是進行n次獨立重復試驗,且每次試驗只有兩種結果,如果不滿足這兩個條件,隨機變量就不服從二項分布.

  (2)當隨機變量的總體很大且抽取的樣本容量相對于總體來說又比較小,而每次抽取時又只有兩種試驗結果時,我們可以把它看作獨立重復試驗,利用二項分布求其分布列.

  求獨立重復試驗的概率:

  (1)在n次獨立重復試驗中,“在相同條件下”等價于各次試驗的結果不會受其他試驗的影響,即

  2,…,n)是第i次試驗的結果.

  (2)獨立重復試驗是相互獨立事件的特例,只要有“恰好”“恰有”字樣的用獨立重復試驗的概率公式計算更簡單,要弄清n,p,k的意義。

  求二項分布:

  二項分布是概率分布的一種,與獨立重復試驗密切相關,解題時要注意結合二項式定理與組合數等性質。

2418827