高二上冊數(shù)學不等式知識點匯總
高二上冊數(shù)學不等式知識點匯總
不管學什么科目,課后復習自然是少不了的,復習是對我們以往所學知識的一個鞏固提高,特別是高中數(shù)學知識點比較復雜多樣化,更需要我們抽出大量的時間進行預習、復習、總結。以下是學習啦小編為您整理的關于高二上冊數(shù)學不等式知識點匯總的相關資料,供您閱讀。
高二上冊數(shù)學不等式知識點匯總:不等式基本知識
1.解不等式問題的分類
(1)解一元一次不等式.
(2)解一元二次不等式.
(3)可以化為一元一次或一元二次不等式的不等式.
?、俳庖辉叽尾坏仁?
②解分式不等式;
?、劢鉄o理不等式;
?、芙庵笖?shù)不等式;
⑤解對數(shù)不等式;
?、藿鈳Ы^對值的不等式;
?、呓獠坏仁浇M.
2.解不等式時應特別注意下列幾點:
(1)正確應用不等式的基本性質(zhì).
(2)正確應用冪函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)的增、減性.
(3)注意代數(shù)式中未知數(shù)的取值范圍.
3.不等式的同解性
(5)|f(x)|
(6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②與g(x)<0同解.
(9)當a>1時,af(x)>ag(x)與f(x)>g(x)同解,當0ag(x)與f(x)
高二上冊數(shù)學不等式知識點匯總:等式的證明
1.不等式證明的依據(jù)
(2)不等式的性質(zhì)(略)
(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
?、赼2+b2≥2ab(a、b∈R,當且僅當a=b時取“=”號)
2.不等式的證明方法
(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.
用比較法證明不等式的步驟是:作差——變形——判斷符號.
(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
證明不等式除以上三種基本方法外,還有反證法、數(shù)學歸納法等.
高二上冊數(shù)學不等式知識點匯總:不等式的性質(zhì)
1.兩個實數(shù)a與b之間的大小關系
2.不等式的性質(zhì)
(4) (乘法單調(diào)性)
3.絕對值不等式的性質(zhì)
(2)如果a>0,那么
(3)|a•b|=|a|•|b|.
(5)|a|-|b|≤|a±b|≤|a|+|b|.
(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.
高二上冊數(shù)學不等式知識點匯總相關文章: